High Temperature Processing and Sintering

Powder Syntheses of Advanced Ceramics Using Novel Approach – DCR Process

İleri Teknoloji Seramik Toz Üretimi İçin Yeni Bir Yaklasım - DKTİ Prosesi

Ali Osman KURT

Sakarya University, Research-Development and Application Centre (SARGEM), 54187, Sakarya,

Turkey.

Advanced ceramics are critical material in many industries, such as health, electronics, military,

high temperature and many other area of applications. They are in general costly products due to

the nature of their production methods that initially rely on high quality synthetic powders. Good

quality powders, i.e., high purity, very fine and uniax grains are very expensive and could be

obtained with complicated and costly processes. Therefore, it is important developing new and

competitive powder production techniques to enabling easy access to cheap ceramic powder raw

material supply. In this concept, recently the dynamic / carbothermal reduction (DCR) process was

developed and successfully applied in synthesizing some advanced ceramics powder, namely

silicon nitride (both α or β form of Si₃N₄), aluminium nitride (AlN), boron nitride (BN), boron

carbide (B₄C), titanium nitride (TiN), zirconium nitride (ZrN) and titanium diboride (TiB₂). DCR

is the high temperature process taken place between 1300 – 1500 °C under controlled atmosphere

in rotary furnace. Although DCR technique was successful in synthesizing such important

advanced ceramic powders in required quality, it was only applied in laboratory scale (i.e. on the

order of a few grams per day). Further work for prototype scale (a few kilograms per day) synthesis

of such powders are planned before moving to the industrial scale (a few hundred or tons per day)

production.

E-mail address: aokurt@sakarya.edu.tr