High Temperature Properties of SiAION Dilek Turan², Alper Uludag ² Yağmur Deniz³, Sinem Baskut, Serkan Ulukut⁴, Ferhat Kara¹ and Servet Turan ¹ ¹Department of Materials Science and Engineering, Eskisehir Technical University, 26480, Eskisehir, Turkey ²Department of Airframe and Powerplant Maintenance, Eskisehir Technical University, 26480, Eskisehir, Turkey ³Department of Metallurgical and Metarials Engineering, Pamukkale University 20160, Denizli, Turkey ⁴TEI-TUSAŞ Engine Industries Inc, 26210, Eskişehir, Turkey Silicon nitride (Si₃N₄) and its solid solutions (SiAlONs) are widely used ceramics for structural applications due to their exceptionally good physical and mechanical properties, such as high wear, hardness and creep resistance. The service life of Si₃N₄ and SiAlON materials at a high temperature under stress is limited by deformation over time, which is termed creep. Because of their highy covalent Si-N bonds and low diffusion coefficients, sintered silicon nitrides are usually densified with the aid of additives which form a liquid phase at the sintering temperature promoting solid transport by the liquid phase sintering mechanism. Unfortunately, on cooling, the liquid generally transforms into a residual intergranular amorphous phase whose quantity, distrubution and chemical composition control the mechanical properties at high temperature. In order to minimize the amount of vitreous phase, several techniques have been tested such as crystallization heat treatments which improve the creep resistance by limiting the viscous flow in the recrrytallized phases. In this study, different heat treatments (AET, BET), different second phase additions (SiC), different additives (Er, Yb and Lu oxides) were used to improve creep properties of SiAION ceramics. The creep results will be explained in terms of microstructure.